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The two-dimensional elliptical cap bubble 
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(Received 16 May 1974) 

A study of the closed wakes behind large gas bubbles rising between two parallel 
plates reveals that they are elliptical in shape, rather than circular. Fitting an 
arc of an ellipse, rather than a circle, to the curved upper surface of such a 
bubble eliminates a discrepancy between theory and experiment noted by Collins 
(1965a). Collins’ analysis of the effect of finite channel width is extended to the 
elliptical case, and the stability of the closed wake is examined. 

1. Introduction 
Several experimental studies have been made of the rise of a large ‘two- 

dimensional’ bubble in liquid held between two flat plates (Collins 1965a, b ;  
Grace & Harrison 1967; Crabtree & Bridgwater 1967). 

The classic theory of Davies & Taylor (1950 )may be applied to this situation. 
Liquid flow near the nose of the bubble is assumed to be given by potential flow 
over the forward part of a circular cylinder, for which the complex potential is 

w = U ( Z  + R2/Z), (1)  

where R is the radius of the cylinder and U the velocity of the distant flow relative 
to the cylinder. With the fluid velocity obtained from (l) ,  Bernoulli’s theorem 
with constant pressure on the dividing streamline gives 

U = +(Rg)Q, (2) 

where R is the radius of the cylinder of which the bubble is a cap. 
Collins (1965a) modified this approach to allow for the finite width of the bed. 

He replaced the second term on the right-hand side of (l), which represents the 
potent’ial due to an unbounded doublet, with the potential due to a doublet 
lying between two planes a t  z = f 4iL (Lamb 1932, p. 71) to obtain 

(3) 20 = UZ + C coth (nZ/L), 

where C is proportional to the strength of the doublet. Applying the analysis of 
Davies & Taylor to this case, he found 

where a is the vertical half-diameter of the closed dividing streamline. Equation 
(4) reduces to ( 3 )  as a/L+ 0 (infinite bed). As a/L-tco (narrow bed) the bubble 
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becomes a slug rising with a velocity determined entirely by the bed width. 
Equation (4) gives in this case 

U = (Lgl6n)t. ( 5 )  

This result is in agreement with other theoret’ical values for slug velocity, apart 
from small differences in the numerical constant. 

A comparison of experimental results with (4) showed that the former were 
some 9 yo too high. Grace & Harrison (1967) found a similar discrepancy when 
they compared results in a wide bed with ( 2 ) .  Collins attributed the discrepancy 
to  a residual three-dimensional effect. 

In  the course of a study of the motion of small bubbles swept round a large 
one (Hills 1971) we have re-examined the shape of a two-dimensional cap and 
its associated closed wake, and concluded that it is more nearly elliptical than 
circular. The experimental evidence is presented in $ 2 ,  while in Q 3 we demonstrate 
that the use of potential flow round an elliptical cylinder to model the flow over 
the bubble cap removes the discrepancy noted above. 

2. The nature of the wake 
Davies & Taylor (1950) showed spark photographs of a spherical cap bubble 

in nitrobenzene which, owing to optical anisotropy of the liquid under shear, 
revealed a closed region of high shear immediately below the bubble, approxi- 
mately completing the sphere. No other wake details were visible. 

Maxworthy (1967) photographed two small spherical cap bubbles rising from 
coloured to clear water: the wake was turbulent for many diameters downstream 
and showed no evidence of a closed region. 

Collins (1968) considered that Maxworthy’s bubbles were too small to be true 
spherical caps, and presented a photograph of a larger bubble (40ml) rising in 
water containing particles of soluble aspirin as tracers. A closed spherical region 
was again apparent. He also presented a photograph taken with the camera 
stationary to show the fluid streamlines, which were very similar to those due to 
an irrotational dipole, again suggesting steady flow over the region beyond a 
closed sphere. A narrow secondary wake was also visible, and the whole pattern 
was similar to flow round a sphere on which boundary-layer separation is delayed 
until the rear stagnation point or just before it. 

Wegener & Parlange (1973) presented schlieren photographs of spherical caps 
rising in water which showed a turbulent region extending many bubbIe diameters 
downstream. Their bubbles were Iarge enough to be true spherical caps and the 
apparent discrepancy with Collins’ work is puzzling. It is possible that the fine 
detail of the schlieren technique obscures the broad flow patterns brought out by 
solid particles. 

In  two dimensions, Collins (1965b) reported a stable vortex pair behind a 
rising cylindrical cap, the closed figure being approximately circular in shape. 
However, Crabtree & Bridgwater (1967) found considerable wake shedding, with 
the formation of a vortex street. A closed wake was only observed in very viscous 
liquids, i.e. a t  small Reynolds numbers. 
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To attempt to clarify the situation, we have investigated the development of 
the wakes behind rising cylindrical cap bubbles of different sizes. The apparatus 
was formed from two plates of Perspex acrylic sheet 600 mm wide and 1200 mm 
high. The nominal separation of the plates was 9 mm, but in spite of being braccd 
by steel bars, the Perspex bowed slightly and the actual bed thickness on the 
vertical centre-line varied from 9-6 mm at the top to 10.5 mm at the bottom. 
Bubbles of varying volume were injected by a cylindrical slide device, and the 
wake was made visible by adding dye to the water in the slide beIow the bubble. 
Details are given in Hills (1971). The rising bubble and wake were photographed 
with a cine camera. In  all cases, the bubble had a perfect closed wake during the 
initial stage of its rise (figure l a ,  plate 1)  but the wake was later shed in an 
irregular vortex street (figure I b, plate 1.) 

The smallest bubble used, of volume 5m1, was not a perfect cylindrical cap 
(figure 1 b).  It rocked from side to side as it rose, and the wake shedding was 
associated with t’his rocking. For this bubble, the Reynolds number was fi SO00 
and the Weber number fi 30 (based on the equivalent cylindrical diameter of 
the bubble). The Weber number for transition from an ellipsoidal to a spherical 
cap is given by Haberman & Morton (1953) as Wb 2 20, and by other workers 
as slightly higher, so there seems to be a close similarity between the two- and 
three-dimensional cases in this respect. 

Larger bubbles did not rock; their wakes increased in size and became slightly 
more elongated as they rose. Eventually, portions of the coloured fluid at  the 
edge of the wake appeared to ‘roll off’ towards the rear rather like a stocking 
being rolled off the leg. Here, they formed two long tails. The tails were normally 
of unequal length, and the longer one gradually curled up behind the remainder 
of the wake and was shed as the first vortex of the street. Determination of the 
precise onset of shedding is somewhat subjective, but figure 2 gives some indica- 
tion of how this varies with bubble size. Collins’ bubble had an equivalent dia- 
meter of about 40 mm, and according to figure 2 it should have become unstable 
a t  a height of about 400 mm. The fact that Collins noted no instability over the 
entire 900mm of his bed height suggests that the thinner bed used in his work 
(6 mm) confers a greater stability on the wake. 

Thus the closed wake seems to be a transient phenomenon in two-dimensional 
beds, occurring only during the initial part of the rise. However, even when wake 
shedding has started, the flow around the bubble cap and the upper part of the 
wake remains steady, and it is this flow which is considered in the remainder of 
the present paper. 

When the closed wake exists, its shape is seen to be not perfectly circular, but 
elongated vertically. It is convenient to characterize this oval by means of the 
ratio of its vertical diameter 2a to its horizontal diameter 2 b. When wake shedding 
has started, the complete oval shape no longer exists, but the top half of the wake, 
including the bubble itself, still forms a semi-oval for which it is possible to 
estimate the semi-diameters a and b and calculate t’he axis ratio x = a/b. Figure 3 
shows a graph of x as a function of height for each of the five bubble sizes studied, 
We note that x initially increases, but that the increase levels off when wake 
shedding starts. The results are very scattered, because of the difficulty in placing 
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Equivalent circular diameter of cap (mm) 

FIGURE 2. Onset of wake shedding. 

Height above bubble inlet (mm) 

V, 10ml cap; x ,  12.5ml cap; 0, 15ml cap. 
FIGURE 3. Variation of axis ratio with height. 0, 5 ml cap; + , 7.5 ml cap; 
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the horizontal diameter when the wake is being shed, and while there is a slight 
tendency for x to increase with bubble size, it is more convenient to use a single 
value throughout: x = 1-3. This value also fits the photographs of Collins (19656) 
and of Crabtree & Bridgwater (1967). 

3. The elliptical cap 
Grace & Harrison (1967) have applied the method of Davies & Taylor to 

irrotational flow around an ellipse. Their result may be expressed as 

u = (ag)*/(1 +x). (6) 

As x+ 1 the ellipse becomes a circle and (6) reduces to (2). 
We have shown that a two-dimensional cap followed by a closed wake forms 

an oval shape which could well be fitted by an ellipse of appropriate axis ratio. 
However, in the majority of experimental work, the wake is not visible and it is 
necessary to determine from the bubble cap alone whether it is an arc of an ellipse 
or a circle, and then determine the appropriat'e length parameter (a  or R). If 
arcs of a circle and ellipse of suitable sizes are superimposed (figure 5 )  it can be 
seen that, over the 100" arc subtended by a bubble cap, the two curves are scarcely 
distinguishable, so that either may equally well be fitted to the bubble outline. 

The size of the bubble is easily determined by fitting mathemat'ically an 
appropriate curve through the nose and two points close to the trailing edge. We 
can fit either a circle of radius R or an ellipse of semi-major axis a and axis ratio x. 
Simple trigonometry shows that a and R are related by 

u/R = ~[1+X2+COS8(X2- l)], ( 7 )  

where 20 is the angle subtended by the circu1a.r arc a t  its centre. For x = 1.3, 
a/R is a weak function of 8 in the range 0 < i9 < 50". Measurements are normally 
made close to the trailing edge, where 8 50", giving a = 1.57R. Substituting 
this value for a in ( B ) ,  with x = 1.3, gives 

u = 0*545(Rg)B. (8) 

Comparison of (8) and (2) shows that the elliptical cap rises 9 % faster than 
the circular cap of the same apparent size. This exactly explains the discrepancy 
observed by Collins ( 1 9 6 5 ~ ) .  

4. Wall effects 
An oval shape very similar to an ellipse is formed by the closed streamline of 

the potential flow due to a source and a sink in a uniform stream. Adapting the 
analysis of Collins ( 1 9 6 5 ~ )  we can calculate the rise velocity of an elliptical cap 
bubble between two plane walls, and thus allow for finite bed width. 

Lamb (1932, p. 71) gives the complex potential for a source between two 
parallel planes a t  z = & &L. For the combination of a source a t  z = + d  and a 
sink a t  z = - d ,  we have 

+ wi log (sinh *) L *  (9) 
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FIGURE 4. Axis ratio as a function of B and 8. 

On the dividing streamline I m  (w) = 0, we find 

sin Y sinh D 

27rx 2nd 
L ,  D=- 27Ty 

where Y = -  x=- 
L ’  L ’  

Gosh X - COB Y Gosh 
m 

y = -t,an-l 
U 

Equation (10) represents an oval with major axis along the real axis. If the 
dimensionless length of the semi-major axis is A = 2na/L, 

sin Y sinh D 
cash X - cos Y cash D 

Y sinh D 
cosh A cosh D’ = tan (11) 

By substituting for the dimensionless length of the semi-minor axis, Y = B when 
X = 0, we obtain an equation relating A ,  B and D.  All three terms include the 
column width L, and it is more convenient to separate out the effect of L by 
writing 

Then 

Equation (12) may be regarded as giving, in implicit form, the variation of x 
(the axis ratio) with B (inversely proportional to the column width) for various 
values of the parameter 6. Figure 4 shows the relationship graphically. It can be 
seen that, for B < 1.2, x is virtually independent of B;  this means that, except 
in narrow channels, the channel width does not affect the shape of the oval. The 
experimental value of x = 1-3 is obtained by setting S = 0.730. Figure 5 presents 
furbher confirmation of the insensitivity of the closed-streamline shape to  values 

AIB = a/b = x, DIB = d/b = 6. 
sin B sinh BS 

1 - cos B cosh BS = tan ( c o s e - h c f f h  Us). (12) 
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FIGURE 5. Comparison of theoretical shapes. -, ellipse, x = 1.3; +, circle, R = 0.828; 
0, equation (12), x = 1.3, 6 = 0.730, B = 1.2; x , limit of equation (12),  B -+ 0, x = 1.3, 
6 = 0.730. 

of B;  it also shows the close similarity between (1  1) and the ellipse, and between 
the ellipse and the circle over the 100" arc subtended by the bubbles. 

To obtain the theoretical rise velocity, we differentiate (8). After some mani- 
pulation, we obtain 

Near to the bubble nose, X = A - H and both H and Y are small. The various 
terms in (I 1) may thus be approximated by their series expansions to give 

( Y  - 4Y3) sinh D Y sinh D 
cosha- cosh D cosh ( A  - H )  - (1 - QY2) cosh D 

whence 
6 sinh A (cosh A - cosh D) 

cosh2 A + cosh A cosh D - 2 
y2 2 H .  

The fluid velocity a t  any point is given by 

Q = ( d w / d ~ ]  

q 2  = agh. 
while, from Bernoulli's theorem, 
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FIGURE 6. Rise velocity of caps in a, finite bed. 
-, equation (17)  ; + , experiment. 

Combining (1 3)-( 16) we obtain 

(17) 
(cosh A - cosh D) (cosh2 A + cosh A cosh D - 2 )  Lg * 

sinh3 A (41 * U =  [ 
It is interesting to study the behaviour of (17) in various limiting cases. 

circle and (17) reduces to (4). 
(i) As d+O. The source and sink become a doublet, the ellipse becomes a 

(ii) As L+co (no wall effect). Equation (17) becomes 

= f(x) (as)*. J 
Numerical calculation off(X) for x = 1.3 and 6 = 0.730 gives a value of 0-435, 
which agrees with equation (6) for the ellipse to the third place of decimals. 
I n  (18), as 6+ 0 and x - t  l , f (x)  -+ $~, which is the value for the unbounded circular 
cap given in ( 2 ) .  

(iii) As L-t 0 (transition to slug flow). Since the source and sink are within the 
closed curve, A > D, whence (17) reduces, in the limit, to ( 5 ) .  

Thus (1 7)  contains all previous results (or very close numerical approximations 
to  them) as special cases. 

In the course of some experimental work reported elsewhere (Hills 1971) wo 
measured the rise velocities of bubbles in the column described in $2.  Bubbles 
were photographed a t  0-1 s intervals using a rotating slotted disk in front of a, 
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fixed camera. Velocities were determined by a least-squares fit of height against 
time, and bubble sizes by fitting an ellipse of axis ratio 1.3 to three points on the 
curved upper surface. Average values were used, after rejecting results for the 
initial transient period. The column width L was constant a t  552 mm, and varia- 
tion in B arose solely through variation in bubble size. The largest value recorded 
was B = 0.93, so that all the results lie within the region where x is independent of 
B. Figure 6 presents the results as a graph of U us. a. Agreement is seen to be 
better than that of Collins (1965a)  or of Grace & Harrison (1967) ;  experimental 
velocities tend to exceed the theory by about 2 %. 

5. Discussion 
Modelling the flow above a two-dimensional cap bubble by irrotational flow 

around an ellipse-like oval leads to a closer agreement with experiment than does 
using irrotational flow around a circle. The residual discrepancy, of some 2 yo, 
could be due to the three-dimensional character of the actual flow as suggested 
by Collins (19653) .  It is not, however, possible to estimate the magnitude of this 
effect. 

A different model flow was proposed by Garabedian (1961)  and discussed by 
Collins (1967) .  It consists of a cycloidal cap followed by an infinite parallel-sided 
stagnant wake. The wake is physically unrealistic, but the cap fulfils the boundary 
condition that the pressure be constant everywhere along the dividing streamline. 
The elliptical and circular cap models use the much weaker condition that the 
second derivative of pressure variation should vanish at  the forward stagnation 
point. 

Over the 100" arc subtended by a bubble, a cycloidal cap is as good a fit to the 
experimental shape as a circle or ellipse; if R is the radius of the fitted circle, the 
rise velocity is given by 

Comparison with ( 2 )  and (8) shows that this equation fits the experimental 
results better than that for a circular cap though less well than that for an 
elliptical one. 

It is not known whether the cycloidal cap is the only solution to the two- 
dimensional free-streamline problem. However, the corresponding three- 
dimensional problem has no unique solution, and Garabedian (1957)  suggested, 
somewhat arbitrarily, that the correct solution is the one which yields the highest 
rise velocity. 

This maximum velocity principle was used by Grace & Harrison (1967) to 
explain their measurements on two-dimensional cap bubbles pierced by a vertical 
rod. Such bubbles are more elongated than unhindered caps and rise faster, and 
the authors suggested that a bubble adopts that stable shape which has the 
greatest rise velocity. Elliptical and parabolic caps with major axes vertical rise 
faster, according to the Davies & Taylor analysis, than circular caps of the same 
volume, and the greater the elongation, the greater the rise velocity. Somehow the 
presence of the vertical rod stabilizes the otherwise unstable elongated con- 
figuration, permitting the faster rising bubbles to be formed. 

( 1 9 )  U = 0 * 5 1 ( R g f ) .  
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We may conjecture that a similar situation holds in our case. Inviscid free- 
streamline theory permits a variety of flow patterns, of which the cycloidal cap is 
one. The more elongated shapes have higher rise velocities but are less stable to 
small perturbations. Stability is provided by viscous effects in the boundary 
layer over the bubble and its following wake, and the bubble adopts that shape 
which has the highest rise velocity consistent with stability. In  water, this turns 
out to be more elongated than the cycloidal cap and well described by an ellipse 
of axis ratio 1.3. The following points may be noted. 

(u) The axis ratio is unaffected by the thickness of the two-dimensional bed. 
The same value, x = 1.3, pertains to the photographs of Collins (thickness 6 mm), 
this work (thickness I0 mm) and Crabtree & Bridgwater (thickness 13 mm). 
It is thus a true two-dimensional effect, unlike the stability of the vortex pair in 
the closed wake, which we showed in 3 2 to be greater in the narrower bed. 

( b )  Increased liquid viscosity increases the axis ratio. In  the photograph of 
Crabtree & Bridgwater for a water-glycerol mixture of viscosity 10 CP the value 
is x = 1.56. 

( c )  The effect of bubble size is uncertain. Figure 3 suggests that x increases 
with bubble size, but the agreement between theory and experiment shown in 
figure 6 indicates that the use of a constant value for x does not give any syste- 
matic error. 

(d) There is no corresponding elongation in the three-dimensional case. The 
photographs which show a closed wake indicate that it is very closely spherical, 
and the rise velocity measured experimentally tends, if anything, to be slightly 
below the theoretical value of Davies & Taylor. 
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